Sample-Efficient Reinforcement Learning With Rich Observations

Nan Jiang Akshay Krishnamurthy Alekh Agarwal John Langford Rob Schapire

- on each visit:
 - patient arrives with symptoms, test results, etc.
 - doctor decides on treatment
 - next time, patient's conditions may be different
- goal: maximize long-term favorable outcomes

Example: Robot Navigation

- at each time step, robot:
 - observes environment (say, via camera)
 - decides action to take
- goal: reach exit quickly

Reinforcement Learning

- repeat:
 - observe context
 - provides (partial) information about underlying state
 - choose action
 - get reward
 - state changes in response to selected action (and other factors)
- goal: learn to choose actions to maximize long-term reward
- realistically, context may be rich, high-dimensional, noisy, etc.
 - e.g. images, text documents, patient records, game-board positions, ...

The Challenge of Exploration

- demands experimentation and exploration challenging!
- actions have long-term effect
- seems must learn entire behavior all at once, not bit-by-bit
 - e.g., combination lock
- · learner resposible for gathering own statistics
 - not like supervised learning (random examples give all needed statistics)
- every episode yields information about just one trajectory (like huge "bandit" problem)
- seems must search entire space to be sure nothing missed
- may face very large spaces
 - can easily be too large to visit every state/context

Rich but Structured

- theory:
 - well-studied when states are visible and state space is small
 - breaks quickly in more general settings
- in practice, RL used in quite rich settings (Atari, go, etc.)
- intuitively, structure helps e.g.:

rich visual observations, but simple, underlying structure

• this talk: is it even information-theoretically possible to provably learn in rich but structured environments?

Main Contributions

- new algorithm for systematic exploration to learn optimal behavior
 - provably sample efficient
 - but not computationally efficient
- new measure of "structured-ness" of learning problem: "Bellman rank"
 - determines sample efficiency of algorithm
 - subsumes many previously studied settings (MDP's, POMDP's, PSR's, ...)

Formal Model

- interaction in episodes
- on each episode:
 - for $h = 1, \ldots, H$, learner:
 - observes context $x_h \in \mathcal{X}$
 - chooses action a_h ∈ A
 - receives reward $r_h \in \mathbb{R}$
- goal (roughly): choose actions to maximize cumulative reward

Formal Model (cont.)

- general: x_{h+1}, r_h may depend on entire history up to when generated
- this talk: focus on simpler case:
 - assume x_{h+1} , r_h depend only on x_h , a_h
 - that is: x_h is state of (perhaps huge) MDP
- assumptions:
 - episodes are i.i.d.
 - possibly huge (or infinite) state/context space ${\mathcal X}$
 - fairly small set of possible actions ${\cal A}$
 - rewards bounded

want to find good rule or policy for choosing actions based on context

 $\pi:\mathcal{X}\to\mathcal{A}$

• measure "goodness" of π by its value:

$$V(\pi) = E\left[\sum_{h=1}^{H} r_h \mid \pi\right]$$

= expected reward if "follow" π (so $\forall h : a_h = \pi(x_h)$)

• goal: find optimal policy

$$\pi^* = \arg \max_{\pi} V(\pi)$$

Q-Learning

- standard approach: Q-learning with function approximation
- let $Q^*(x, a) =$ expected reward if:
 - start in x
 - execute a
 - then follow π^* to end of episode

• can show:

$$\pi^*(x) = \arg \max_a Q^*(x, a)$$

- \therefore if can learn Q^* then also have π^*
- problem: often too many states x to visit every one
 ⇒ need to generalize across states

Function Approximation

- powerful practical approach:
 - learn approximation of Q^*
 - use function from some class to elicit generalization (e.g. neural net)
- implicit assumption: true Q^* (approximately) in class
- even with assumption,
 - no guarantee previous methods will work
 - no bound on how much data needed
 - no theory on how to explore in large spaces
- this talk: under same assumption, we give exploration algorithm that is provably correct and sample efficient

Our Setting for Function Approximation

- intuitively, assume know "form" of Q^*
- formally, assume:
 - given class \mathcal{F} of "candidate" functions $f: \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$
 - realizability: $Q^* \in \mathcal{F}$ [for now later will relax]
 - $|\mathcal{F}|$ finite, but typically huge [can relax]
- learning problem: under these assumptions, efficiently find approximation of π^* through systematic experimentation

A First Attempt

• every $f \in \mathcal{F}$ associated with policy:

```
\pi_f(x) = \arg\max_a f(x,a)
```

• can approximate value

$$V(\pi_f) = \mathrm{E}\left[\sum r_h \mid \pi_f\right]$$

by trying π_f on many episodes

- can do for every $f \in \mathcal{F}$ and choose best
- problem: requires $O(|\mathcal{F}|)$ episodes huge!
- in supervised learning, usually only need $O(\ln |\mathcal{F}|)$ examples
- possible to do much better?

Bellman Equations

• to find Q^* , standard to use Bellman equations:

 $\forall x_h, a_h: \ Q^*(x_h, a_h) = \mathrm{E}\left[r_h + Q^*(x_{h+1}, \pi^*(x_{h+1})) \mid x_h, a_h\right]$

- sufficient to find $f \in \mathcal{F}$ satisfying equations
- if can find then:
 - π_f optimal
 - can show:

$$V(\pi_f) = \underbrace{\mathbb{E}\left[f(x_1, \pi_f(x_1))\right]}_{\tilde{V}(f)}$$

 \Rightarrow can estimate π_f 's value from f and samples of x_1

- problem: seem to need to visit every state to solve Bellman equations
 - how to do when state space is huge?

Eliminating Candidates

• if $f = Q^*$ then Bellman can be written:

 $\forall x_h, a_h: f(x_h, a_h) - \mathbb{E}[r_h + f(x_{h+1}, \pi_f(x_{h+1})) | x_h, a_h] = 0$

- since holds for all x_h , a_h , also holds (in expectation) if:
 - run another policy π for h-1 steps
 - arrive at (random) x_h
 - let $a_h = \pi_f(x_h)$

• yields:

$$\underbrace{\mathbb{E}\left[f(x_{h},\pi_{f}(x_{h}))-r_{h}-f(x_{h+1},\pi_{f}(x_{h+1})) \mid a_{1:h-1}\sim\pi\right]}_{\mathcal{E}^{h}(f,\pi)} = 0$$

Eliminating Candidates (cont.)

- so: if $f = Q^*$ then $\mathcal{E}^h(f, \pi) = 0$ for all π , h
- contrapositive:

if find any π , h for which $\mathcal{E}^{h}(f,\pi) \neq 0$ then $f \neq Q^{*}$

- can eliminate f as candidate
- can statistically estimate $\mathcal{E}^{h}(f,\pi)$ from random trajectories

Algorithm: "Olive" (Optimism Led Iterative Value-function Elimination)

- \mathcal{F}_0 = uneliminated candidates (initially $\mathcal{F}_0 = \mathcal{F}$)
- repeat
 - pick $\hat{f} \in \mathcal{F}_0$ which purports to give best policy $\pi_{\hat{f}}$

• $\hat{f} = \arg \max_{f \in \mathcal{F}_0} \tilde{V}(f)$ where $\tilde{V}(f) = \mathbb{E} \left[f(x_1, \pi_f(x_1)) \right]$

- test if as good as promised
 - estimate $V(\pi_{\hat{f}}) = \mathop{\mathrm{E}}_{\sim} \left[\sum_{h \in h} r_h \mid \pi_{\hat{f}}\right]$
 - check if $V(\pi_{\widehat{f}})\gtrsim \widetilde{V}(\widehat{f})$
- if it is
 - output $\pi_{\hat{f}}$ and exit
- else
 - eliminate all $f \in \mathcal{F}_0$ for which $\mathcal{E}^h(f, \pi_{\hat{f}}) \not\approx 0$ (for any h)

- Claim: if Olive halts, then $\pi_{\hat{f}}$ is (almost) optimal
- proof:

$$egin{array}{rcl} V(\pi_{\widehat{f}}) &\gtrsim & \widetilde{V}(\widehat{f}) \ &\geq & \widetilde{V}(Q^*) \ &= & V(\pi^*) \end{array}$$

[halting condition] [choice of \hat{f} ; $Q^* \in \mathcal{F}_0$] [Q^* satisfies Bellman]

Sample Efficiency (per iteration)

- to estimate $\tilde{V}(f) = \mathbb{E}\left[f(x_1, \pi_f(x_1))\right]$ for all $f \in \mathcal{F}$:
 - make $O(\ln |\mathcal{F}|)$ repeated draws of x_1
- to estimate $\mathcal{E}^h(f, \pi_{\hat{f}})$ for all $f \in \mathcal{F}$:
 - repeat $O(|\mathcal{A}| \ln |\mathcal{F}|)$ times:
 - run $\pi_{\hat{f}}$ for h-1 steps
 - pick a_h uniformly at random from \mathcal{A}
 - observe x_h , a_h , r_h , x_{h+1}
 - to estimate $\mathcal{E}^{h}(f, \pi_{\hat{f}})$, include only cases for which $a_{h} = \pi_{f}(x_{h})$
- need only one sample to get accurate estimates simultaneously for all f ∈ F
- main remaining question: how many iterations?

Bellman Matrix and Its Rank

- consider full matrix of Bellman errors (for fixed h)
- rows, columns indexed by $f, f' \in \mathcal{F}$ (so $|\mathcal{F}| \times |\mathcal{F}|$)
- entry (f, f') is: $\mathcal{E}^h(f, \pi_{f'})$

- rows ↔ "candidates"
- columns \leftrightarrow "witnesses"
- if find column f' with $\mathcal{E}^h(f, \pi_{f'}) \neq 0$, can eliminate row f
- Bellman rank = rank of this matrix

Bellman Rank

- new measure of learning complexity
- claim: number of iterations of Olive is polynomial in Bellman rank
- can be bounded by (or in terms of):
 - number of states of MDP
 - number of "hidden" states, e.g.:

size of grid, not size of observation space

- rank of PSR
- dimension of LQR state space

Bounding Olive Iterations by Bellman Rank

- say can estimate all expectations exactly
- on earlier iterations, found $\hat{f}_1, \hat{f}_2, \ldots$
 - correspond to columns of Bellman matrix
- $\hat{f} \in \mathcal{F}_0 = \{ \text{rows } f \text{ with all } 0 \text{'s in selected columns} \}$

- can show: $\tilde{V}(\hat{f}) \neq V(\pi_{\hat{f}}) \Rightarrow \exists h : \mathcal{E}^{h}(\hat{f}, \pi_{\hat{f}}) \neq 0$
- new column linearly independent of columns already found
- :. (# iterations) = (# columns) \leq Bellman rank
- for approximate estimates of expectations, use geometric argument based on ellipsoid volumes

 Theorem: Let M be Bellman rank. With high probability, Olive returns policy π̂ with V(π̂) ≥ V(π*) − ε, and the number of episodes executed is at most

$$ilde{O}\left(rac{M^2H^3|\mathcal{A}|\ln|\mathcal{F}|}{\epsilon^2}
ight).$$

More General Formulation

- can generalize framework to remove realizability assumption
- given:
 - space Π of policies $\pi: \mathcal{X} \to \mathcal{A}$
 - set $\mathcal G$ of candidate "value functions" $g:\mathcal X \to \mathbb R$
- can show: if there is a "good" policy π ∈ Π whose value function is in G then Olive will learn to do as well as (best such) π
- earlier formulation is special case
- agnostic don't need $Q^* \in \mathcal{F}$, $\pi^* \in \Pi$, etc.

Generalizations and Extensions

- so far, considered large-state, visible MDP's
- actually holds for much more general processes where
 - context x is any observable information
 - policies π are reactive
 - e.g. POMDP's with rich observations x
- can allow Π , \mathcal{G} (or \mathcal{F}) to be infinite
 - get bounds in terms of VC-like measures
- robustness
 - okay if only approximation of value function is in $\ensuremath{\mathcal{G}}$
 - okay if Bellman error matrix is only approximated by low-rank matrix

Summary

- Bellman rank:
 - new measure of structural complexity
 - captures many other settings
- Olive:
 - first provably sample-efficient exploration algorithm for general contextual decision processes
 - allows rich observations
 - polynomial in Bellman rank
- main open problem: find algorithm with similar properties that is also computationally efficient