Sample-Efficient Reinforcement Learning
With Rich Observations

Nan Jiang

Akshay Krishnamurthy
Alekh Agarwal

John Langford

Rob Schapire

Example: Medical Treatment

e on each visit:

patient arrives with symptoms, test results, etc.
doctor decides on treatment
next time, patient’'s conditions may be different

e goal: maximize long-term favorable outcomes

Example: Robot Navigation

e at each time step, robot:
 observes environment (say, via camera)
o decides action to take

e goal: reach exit quickly

Reinforcement Learning

e repeat:
observe context
provides (partial) information about underlying state
choose action
get reward
state changes in response to selected action
(and other factors)
e goal: learn to choose actions to maximize long-term reward
e realistically, context may be rich, high-dimensional, noisy, etc.

e.g. images, text documents, patient records,
game-board positions, ...

The Challenge of Exploration

e demands experimentation and exploration — challenging!
e actions have long-term effect

e seems must learn entire behavior all at once, not bit-by-bit
e.g., combination lock
e learner resposible for gathering own statistics
not like supervised learning
(random examples give all needed statistics)
e every episode yields information about just one trajectory
(like huge “bandit” problem)
e seems must search entire space to be sure nothing missed
e may face very large spaces
can easily be too large to visit every state/context

Rich but Structured

e theory:
o well-studied when states are visible and state space is
small
o breaks quickly in more general settings
e in practice, RL used in quite rich settings (Atari, go, etc.)
e intuitively, structure helps — e.g.:

rich visual observations, but simple, underlying structure

e this talk: is it even information-theoretically possible to
provably learn in rich but structured environments?

Main Contributions

e new algorithm for systematic exploration to learn optimal
behavior
provably sample efficient
but not computationally efficient

e new measure of “structured-ness” of learning problem:
“Bellman rank”
determines sample efficiency of algorithm
subsumes many previously studied settings

(MDP's, POMDP's, PSR’s, ...)

Formal Model

e interaction in episodes
e on each episode:
for h=1,... H, learner:
o observes context x, € X
o chooses action a, € A
e receives reward r, € R
e goal (roughly): choose actions to maximize cumulative reward

H

> rh

h=1

Formal Model (cont.)

e general: xpi1, rp may depend on entire history up to when
generated

e this talk: focus on simpler case:
assume xp11, rn depend only on xp, ap
that is: xj, is state of (perhaps huge) MDP

e assumptions:
episodes are i.i.d.
possibly huge (or infinite) state/context space X

fairly small set of possible actions A
rewards bounded

Optimal Policy

e want to find good rule or policy for choosing actions based on
context

T X = A

e measure “goodness” of 7 by its value:

H

V(r) = E|> | w]
h=1

= expected reward if “follow” 7 (so Vh : ap = m(xp))

e goal: find optimal policy

" = arg max V(7)
m

Q-Learning

e standard approach: Q-learning with function approximation
e let Q*(x, a) = expected reward if:

start in x

execute a

then follow 7* to end of episode
e can show:
7 (x) = arg max Q*(x, a)
a

. if can learn Q then also have 7*

e problem: often too many states x to visit every one
= need to generalize across states

Function Approximation

e powerful practical approach:
learn approximation of Q*
use function from some class to elicit generalization
(e.g. neural net)

e implicit assumption: true Q* (approximately) in class

e even with assumption,
no guarantee previous methods will work
no bound on how much data needed
no theory on how to explore in large spaces

e this talk: under same assumption, we give exploration
algorithm that is provably correct and sample efficient

Our Setting for Function Approximation

e intuitively, assume know “form” of Q*
e formally, assume:

o given class F of “candidate” functions f : X' x A — R
o realizability: Q* € F [for now — later will relax]
o |F| finite, but typically huge [can relax]
e learning problem: under these assumptions, efficiently find
approximation of 7* through systematic experimentation

A First Attempt

every f € F associated with policy:

7r(x) = arg max f(x, a)
a

can approximate value

V(7Tf) =E [Zrh | 7Tf:|

by trying ¢ on many episodes

can do for every f € F and choose best

problem: requires O (|F|) episodes — huge!

in supervised learning, usually only need O (In|F|) examples

possible to do much better?

Bellman Equations
e to find Q*, standard to use Bellman equations:

Vxp,an: Q"(xn,an) = E [+ Q" (Xht1, 7 (Xn+1)) | Xn, an)

e sufficient to find f € F satisfying equations

e if can find then:
¢ optimal
can show:

V(me) = E[f(x, me(x1))]
—_——
V(f)
= can estimate 7¢'s value from f and samples of x;

e problem: seem to need to visit every state to solve Bellman
equations
how to do when state space is huge?

Eliminating Candidates

e if f = Q* then Bellman can be written:

Vxp, ap f(Xh, ah) —E [rh + f(Xh+1, 7Tf(Xh+]_)) | X, ah] =0

e since holds for all xp, ap, also holds (in expectation) if:
o run another policy 7 for h — 1 steps
o arrive at (random) xj
o let ap = 7Tf(Xh)

e yields:

E [f(xn, 7m£(xn)) — rh — f(Xbt1, Tr(Xpt1)) | @a1:h—1 ~ 7 =0

ENF)

Eliminating Candidates (cont.)

e so: if f = Q" then £"(f,7) =0 for all 7, h
e contrapositive:

if find any 7, h for which (£, 7) # 0 then f # Q*
e can eliminate f as candidate

e can statistically estimate £"(f,) from random trajectories

Algorithm: “Olive” (Optimism Led Iterative Value-function Elimination)

e Fo = uneliminated candidates (initially o = F)
e repeat
* pick f € Fo which purports to give best policy 7;
f = arg maxfer, V(f)
where V(f) = E [f(x1, mr(x1))]
o test if as good as promised
estimate V(7;) =E [>, rn | 7]
check if V() 2 V(f)
o ifitis
output 77 and exit

o else
eliminate all € Fy for which (f,7;) % 0
(for any h)

Correctness

e Claim: if Olive halts, then 7; is (almost) optimal

e proof:

V(m

f

)

VeV

V(F) [halting condition]
V(Q¥) [choice of f; Q* € Fo]
V(7*) [Q* satisfies Bellman]

Sample Efficiency (per iteration)

o to estimate V/(f) = E [f(x1, 7r(x1))] for all f € F:
» make O(In|F|) repeated draws of x;
e to estimate £M(f, 7;) for all f € F:
o repeat O(|A|In|F]|) times:
run 7z for h — 1 steps

pick ap uniformly at random from A
observe xu, ap, rn, Xpi1
* to estimate £(f, m;), include only cases for which
ap = r(xn)
e need only one sample to get accurate estimates
simultaneously for all f € F

e main remaining question: how many iterations?

Bellman Matrix and Its Rank

e consider full matrix of Bellman errors (for fixed h)
e rows, columns indexed by f, " € F (so |F| x |F|)
o entry (f,f')is: EMN(F,7s)

f‘/

£l &Nf,me)

e rows < ‘“candidates”
e columns < “witnesses”
e if find column ’ with E"(f,7¢) # 0, can eliminate row f

Bellman rank = rank of this matrix

Bellman Rank

e new measure of learning complexity
e claim: number of iterations of Olive is polynomial in Bellman
rank

e can be bounded by (or in terms of):
o number of states of MDP
e number of “hidden” states, e.g.:

size of grid, not size of observation space
« rank of PSR
» dimension of LQR state space

Bounding Olive Iterations by Bellman Rank

e say can estimate all expectations exactly

e on earlier iterations, found f, f, . ..
correspond to columns of Bellman matrix

o f € Fo = {rows f with all 0's in selected columns}

i A f f fa

0 --- 0

>
o -
N
=

o can show: V/(f) # V(rp) = 3h: EN(F.m;) #0
e new column linearly independent of columns already found
(# iterations) = (# columns) < Bellman rank

e for approximate estimates of expectations, use geometric
argument based on ellipsoid volumes

Main Theorem

e Theorem: Let M be Bellman rank. With high probability,
Olive returns policy 7 with V(7)) > V/(7*) — ¢, and the
number of episodes executed is at most

~ [MPH3| Al
o (MHIAI),

€

More General Formulation

e can generalize framework to remove realizability assumption
e given:

space [1 of policies 7 : X — A

set G of candidate "value functions” g: X — R

e can show: if there is a “good” policy m € I'1 whose value
function is in G then Olive will learn to do as well as
(best such) 7

e earlier formulation is special case

e agnostic — don't need Q* € F, n* € I, etc.

Generalizations and Extensions

so far, considered large-state, visible MDP's

actually holds for much more general processes where
context x is any observable information
policies 7 are reactive
e.g. POMDP’s with rich observations x

can allow I1, G (or F) to be infinite
get bounds in terms of VC-like measures

robustness
okay if only approximation of value function is in G
okay if Bellman error matrix is only approximated by
low-rank matrix

Summary

e Bellman rank:
new measure of structural complexity
captures many other settings
e Olive:
first provably sample-efficient exploration algorithm for
general contextual decision processes
allows rich observations
polynomial in Bellman rank

e main open problem: find algorithm with similar properties
that is also computationally efficient

