
Sample-Efficient Reinforcement LearningSample-Efficient Reinforcement LearningSample-Efficient Reinforcement LearningSample-Efficient Reinforcement LearningSample-Efficient Reinforcement Learning
With Rich ObservationsWith Rich ObservationsWith Rich ObservationsWith Rich ObservationsWith Rich Observations

Nan Jiang
Akshay Krishnamurthy
Alekh Agarwal
John Langford
Rob SchapireRob SchapireRob SchapireRob SchapireRob Schapire

Example: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical TreatmentExample: Medical Treatment

• on each visit:

• patient arrives with symptoms, test results, etc.
• doctor decides on treatment
• next time, patient’s conditions may be different

• goal: maximize long-term favorable outcomes

Example: Robot NavigationExample: Robot NavigationExample: Robot NavigationExample: Robot NavigationExample: Robot Navigation

• at each time step, robot:
• observes environment (say, via camera)
• decides action to take

• goal: reach exit quickly

Reinforcement LearningReinforcement LearningReinforcement LearningReinforcement LearningReinforcement Learning

• repeat:
• observe context

• provides (partial) information about underlying state

• choose action
• get reward
• state changes in response to selected action

(and other factors)

• goal: learn to choose actions to maximize long-term reward

• realistically, context may be rich, high-dimensional, noisy, etc.

• e.g. images, text documents, patient records,
game-board positions, ...

The Challenge of ExplorationThe Challenge of ExplorationThe Challenge of ExplorationThe Challenge of ExplorationThe Challenge of Exploration

• demands experimentation and exploration — challenging!

• actions have long-term effect

• seems must learn entire behavior all at once, not bit-by-bit
• e.g., combination lock

• learner resposible for gathering own statistics
• not like supervised learning

(random examples give all needed statistics)

• every episode yields information about just one trajectory
(like huge “bandit” problem)

• seems must search entire space to be sure nothing missed

• may face very large spaces
• can easily be too large to visit every state/context

Rich but StructuredRich but StructuredRich but StructuredRich but StructuredRich but Structured

• theory:
• well-studied when states are visible and state space is

small
• breaks quickly in more general settings

• in practice, RL used in quite rich settings (Atari, go, etc.)

• intuitively, structure helps — e.g.:

rich visual observations, but simple, underlying structure

• this talk: is it even information-theoretically possible to
provably learn in rich but structured environments?

Main ContributionsMain ContributionsMain ContributionsMain ContributionsMain Contributions

• new algorithm for systematic exploration to learn optimal
behavior

• provably sample efficient
• but not computationally efficient

• new measure of “structured-ness” of learning problem:
“Bellman rank”

• determines sample efficiency of algorithm
• subsumes many previously studied settings

(MDP’s, POMDP’s, PSR’s, ...)

Formal ModelFormal ModelFormal ModelFormal ModelFormal Model

• interaction in episodes

• on each episode:
for h = 1, . . . ,H, learner:

• observes context xh ∈ X
• chooses action ah ∈ A
• receives reward rh ∈ R

• goal (roughly): choose actions to maximize cumulative reward

H∑
h=1

rh

Formal Model (cont.)Formal Model (cont.)Formal Model (cont.)Formal Model (cont.)Formal Model (cont.)

• general: xh+1, rh may depend on entire history up to when
generated

• this talk: focus on simpler case:
• assume xh+1, rh depend only on xh, ah
• that is: xh is state of (perhaps huge) MDP

• assumptions:

• episodes are i.i.d.
• possibly huge (or infinite) state/context space X
• fairly small set of possible actions A
• rewards bounded

Optimal PolicyOptimal PolicyOptimal PolicyOptimal PolicyOptimal Policy

• want to find good rule or policy for choosing actions based on
context

π : X → A

• measure “goodness” of π by its value:

V (π) = E

[
H∑

h=1

rh | π

]
= expected reward if “follow” π (so ∀h : ah = π(xh))

• goal: find optimal policy

π∗ = arg max
π

V (π)

Q-LearningQ-LearningQ-LearningQ-LearningQ-Learning

• standard approach: Q-learning with function approximation

• let Q∗(x , a) = expected reward if:

• start in x

• execute a

• then follow π∗ to end of episode
• can show:

π∗(x) = arg max
a

Q∗(x , a)

∴ if can learn Q∗ then also have π∗

• problem: often too many states x to visit every one
⇒ need to generalize across states

Function ApproximationFunction ApproximationFunction ApproximationFunction ApproximationFunction Approximation

• powerful practical approach:
• learn approximation of Q∗

• use function from some class to elicit generalization
(e.g. neural net)

• implicit assumption: true Q∗ (approximately) in class

• even with assumption,
• no guarantee previous methods will work
• no bound on how much data needed
• no theory on how to explore in large spaces

• this talk: under same assumption, we give exploration
algorithm that is provably correct and sample efficient

Our Setting for Function ApproximationOur Setting for Function ApproximationOur Setting for Function ApproximationOur Setting for Function ApproximationOur Setting for Function Approximation

• intuitively, assume know “form” of Q∗

• formally, assume:

• given class F of “candidate” functions f : X ×A → R
• realizability: Q∗ ∈ F [for now — later will relax]
• |F| finite, but typically huge [can relax]

• learning problem: under these assumptions, efficiently find
approximation of π∗ through systematic experimentation

A First AttemptA First AttemptA First AttemptA First AttemptA First Attempt

• every f ∈ F associated with policy:

πf (x) = arg max
a

f (x , a)

• can approximate value

V (πf) = E
[∑

rh | πf
]

by trying πf on many episodes

• can do for every f ∈ F and choose best

• problem: requires O (|F|) episodes — huge!

• in supervised learning, usually only need O (ln |F|) examples

• possible to do much better?

Bellman EquationsBellman EquationsBellman EquationsBellman EquationsBellman Equations

• to find Q∗, standard to use Bellman equations:

∀xh, ah : Q∗(xh, ah) = E [rh + Q∗(xh+1, π
∗(xh+1)) | xh, ah]

• sufficient to find f ∈ F satisfying equations

• if can find then:
• πf optimal
• can show:

V (πf) = E [f (x1, πf (x1))]︸ ︷︷ ︸
Ṽ (f)

⇒ can estimate πf ’s value from f and samples of x1

• problem: seem to need to visit every state to solve Bellman
equations

• how to do when state space is huge?

Eliminating CandidatesEliminating CandidatesEliminating CandidatesEliminating CandidatesEliminating Candidates

• if f = Q∗ then Bellman can be written:

∀xh, ah : f (xh, ah)− E [rh + f (xh+1, πf (xh+1)) | xh, ah] = 0

• since holds for all xh, ah, also holds (in expectation) if:
• run another policy π for h − 1 steps
• arrive at (random) xh
• let ah = πf (xh)

• yields:

E [f (xh, πf (xh))− rh − f (xh+1, πf (xh+1)) | a1:h−1 ∼ π]︸ ︷︷ ︸
Eh(f , π)

= 0

Eliminating Candidates (cont.)Eliminating Candidates (cont.)Eliminating Candidates (cont.)Eliminating Candidates (cont.)Eliminating Candidates (cont.)

• so: if f = Q∗ then Eh(f , π) = 0 for all π, h

• contrapositive:
if find any π, h for which Eh(f , π) 6= 0 then f 6= Q∗

• can eliminate f as candidate

• can statistically estimate Eh(f , π) from random trajectories

Algorithm: “Olive” (Optimism Led Iterative Value-function Elimination)Algorithm: “Olive” (Optimism Led Iterative Value-function Elimination)Algorithm: “Olive” (Optimism Led Iterative Value-function Elimination)Algorithm: “Olive” (Optimism Led Iterative Value-function Elimination)Algorithm: “Olive” (Optimism Led Iterative Value-function Elimination)

• F0 = uneliminated candidates (initially F0 = F)

• repeat
• pick f̂ ∈ F0 which purports to give best policy πf̂

• f̂ = arg maxf ∈F0 Ṽ (f)
where Ṽ (f) = E [f (x1, πf (x1))]

• test if as good as promised

• estimate V (πf̂) = E
[∑

h rh | πf̂
]

• check if V (πf̂) & Ṽ (f̂)

• if it is

• output πf̂ and exit

• else

• eliminate all f ∈ F0 for which Eh(f , πf̂) 6≈ 0
(for any h)

CorrectnessCorrectnessCorrectnessCorrectnessCorrectness

• Claim: if Olive halts, then πf̂ is (almost) optimal

• proof:

V (πf̂) & Ṽ (f̂) [halting condition]

≥ Ṽ (Q∗) [choice of f̂ ; Q∗ ∈ F0]
= V (π∗) [Q∗ satisfies Bellman]

Sample Efficiency (per iteration)Sample Efficiency (per iteration)Sample Efficiency (per iteration)Sample Efficiency (per iteration)Sample Efficiency (per iteration)

• to estimate Ṽ (f) = E [f (x1, πf (x1))] for all f ∈ F :

• make O(ln |F|) repeated draws of x1

• to estimate Eh(f , πf̂) for all f ∈ F :

• repeat O(|A| ln |F|) times:

• run πf̂ for h − 1 steps
• pick ah uniformly at random from A
• observe xh, ah, rh, xh+1

• to estimate Eh(f , πf̂), include only cases for which
ah = πf (xh)

• need only one sample to get accurate estimates
simultaneously for all f ∈ F

• main remaining question: how many iterations?

Bellman Matrix and Its RankBellman Matrix and Its RankBellman Matrix and Its RankBellman Matrix and Its RankBellman Matrix and Its Rank

• consider full matrix of Bellman errors (for fixed h)

• rows, columns indexed by f , f ′ ∈ F (so |F| × |F|)
• entry (f , f ′) is: Eh(f , πf ′)

f ′

...
f · · · Eh(f , πf ′) · · ·

...

• rows ↔ “candidates”

• columns ↔ “witnesses”

• if find column f ′ with Eh(f , πf ′) 6= 0, can eliminate row f

• Bellman rank = rank of this matrix

Bellman RankBellman RankBellman RankBellman RankBellman Rank

• new measure of learning complexity

• claim: number of iterations of Olive is polynomial in Bellman
rank

• can be bounded by (or in terms of):
• number of states of MDP
• number of “hidden” states, e.g.:

size of grid, not size of observation space
• rank of PSR
• dimension of LQR state space

Bounding Olive Iterations by Bellman RankBounding Olive Iterations by Bellman RankBounding Olive Iterations by Bellman RankBounding Olive Iterations by Bellman RankBounding Olive Iterations by Bellman Rank

• say can estimate all expectations exactly

• on earlier iterations, found f̂1, f̂2, . . .
• correspond to columns of Bellman matrix

• f̂ ∈ F0 = {rows f with all 0’s in selected columns}

f̂3 f̂1 f̂ f̂2 f̂4
...

...
...

...
...

f̂ · · · 0 0 2.1 · · · 0 · · · 0
...

...
...

...
...

• can show: Ṽ (f̂) 6= V (πf̂)⇒ ∃h : Eh(f̂ , πf̂) 6= 0

• new column linearly independent of columns already found

∴ (# iterations) = (# columns) ≤ Bellman rank

• for approximate estimates of expectations, use geometric
argument based on ellipsoid volumes

Main TheoremMain TheoremMain TheoremMain TheoremMain Theorem

• Theorem: Let M be Bellman rank. With high probability,
Olive returns policy π̂ with V (π̂) ≥ V (π∗)− ε, and the
number of episodes executed is at most

Õ

(
M2H3|A| ln |F|

ε2

)
.

More General FormulationMore General FormulationMore General FormulationMore General FormulationMore General Formulation

• can generalize framework to remove realizability assumption

• given:
• space Π of policies π : X → A
• set G of candidate “value functions” g : X → R

• can show: if there is a “good” policy π ∈ Π whose value
function is in G then Olive will learn to do as well as
(best such) π

• earlier formulation is special case

• agnostic — don’t need Q∗ ∈ F , π∗ ∈ Π, etc.

Generalizations and ExtensionsGeneralizations and ExtensionsGeneralizations and ExtensionsGeneralizations and ExtensionsGeneralizations and Extensions

• so far, considered large-state, visible MDP’s

• actually holds for much more general processes where
• context x is any observable information
• policies π are reactive
• e.g. POMDP’s with rich observations x

• can allow Π, G (or F) to be infinite
• get bounds in terms of VC-like measures

• robustness
• okay if only approximation of value function is in G
• okay if Bellman error matrix is only approximated by

low-rank matrix

SummarySummarySummarySummarySummary

• Bellman rank:
• new measure of structural complexity
• captures many other settings

• Olive:
• first provably sample-efficient exploration algorithm for

general contextual decision processes
• allows rich observations
• polynomial in Bellman rank

• main open problem: find algorithm with similar properties
that is also computationally efficient

