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Supervised learning Unsupervised learning
» Classification > Representation learning
> Regression » Clustering
» Categorization » Dimensionality reduction
» Search > Density estimation
| 4 >

In the landscape of ML research:

» Supervised ML dominates not only practice ...
> ...but also theory



Learning data representations

PCA was among the first attempts

N ) 5 O 8
AR EEEE L
WRERSEREEESZNE -
VS HEERNEE
QORAREEEEREE
ASBESESEESEI
“UERENESERED
URENSERERESE
FERGEGEEESRT
wASHBRRNEEEE
@A EERESEE
WREERAEEEEER

PCA on 12 x 12-patches of natural images



Learning data representations

PCA was among the first attempts

N ) 5 O 8
AR EEEE L
WRERSEREEESZNE -
VS HEERNEE
QORAREEEEREE
ASBESESEESEI
“UERENESERED
URENSERERESE
FERGEGEEESRT
wASHBRRNEEEE
@A EERESEE
WREERAEEEEER

PCA on 12 x 12-patches of natural images

not localized, visually difficult to interpret



Learning data representations

Sparse coding (Olshausen and Field, '96)
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Learning data representations

Olshausen and Field, '96)
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Sparse coding

local, oriented, interpretable
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Sparse coding

Sparse coding (a.k.a. dictionary learning):
learn an over-complete, sparse representation for a set of data points



Sparse coding

Sparse coding (a.k.a. dictionary learning):
learn an over-complete, sparse representation for a set of data points

- f

y € R" (e.g. images) dictionary A € R™*™
code x € R™

» dictionary is overcomplete (n < m)

> representation (code) is sparse
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Input: p data samples: Y = [y, @) . y®)] c R*P

Goal: find dictionary A and codes X = [z, 22 ... z(P)] € R™*P that
sparsely represent Y':
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Two major obstacles:

1. Theory

» Highly non-convex both in objective and constraints
» few provably correct algorithms (barring recent breakthroughs)

2. Practice

» even heuristics face memory and running-time issues
» merely storing an estimate of A requires mn = Q(n?) memory



This talk

Overview of our recent algorithmic work on sparse coding
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‘ Dealing with missing data ]

Autoencoder trainini l
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Structured dictionaries
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Key idea: impose additional structure on A



Structured dictionaries

Y ~ AX

Key idea: impose additional structure on A

One type of structure is double-sparsity

» Dictionary is itself sparse in some fixed basis ®

yeR”

m

sparse comp. A € R"*™
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sparse code x € R™



Double-sparsity

Double-sparse coding!
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Double-sparse coding w/ sym8

Regular sparse coding

wavelets

igures reproduced using Trainlets [Sulam et al. '16]



Previous work

Y =~ AX 4+ noise

Setting Approach (w/c?.r(foise) (w/sn;(;ise)
Regular | K-SVD (Aharon et al '06) X X
Er-SPuD (Spielman '12)  O(n?logn) X
Arora et al '15 O(mk) X




Previous work

Y ~ AX + noise

Setting Approach (W/jncoise) (w/sﬁgise) Run. Time
Regular | K-SVD (Aharon et al '06) X X X
Er-SPuD (Spielman '12)  O(n2logn) X Q(nt)
Arora et al '15 O(mk) X O(mn2p)
Rubinstein et al '10 X X X
Double Gribonval et al '15 O(mr) O(ma) X
SParse | Trainlets (Sulam et al '16) X X X

(r: sparsity of columns of A, k: sparsity of columns of X)

But no provable, tractable algorithms had been reported to date..



Our contributions (I)

Y ~ AX + noise

Setting Approach (W/c?foise) (W/Srf)ise) Run. Time
Regular | K-SVD (Aharon et al '06) X X X
Er-SPuD (Spielman '12)  O(n?logn) X Q(n%)
Arora et al '15 O(mk) X O(mn2p)
Rubinstein et al '10 X X X
Double Gribonval et al '15 O(mr) O(mr) X
Sparse Sulam et al '16 X X X
Our method* O(mr) O(mr + o2 e O(mnp)

*T. Nguyen, R. Wong, C. Hegde, "A Provable Approach for Double-Sparse Coding”, AAAI 2018.



Setup

We assume the following generative model

r

Suppose that p samples are generated? as
y @ = A 20 i=1,2,...p

» A* is unknown, true dictionary with r-sparse columns

» z* has uniform k-sparse support with independent nonzeros

“For simplicity, assume ® = I, no noise

Goal: Provably learn A* with low sample complexity and running time
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Approach overview
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Approach overview

) B 1 2
min £(4, X) = 5|V - AX|z,
st. 2Dy <k, [Aaillp <7

1. Spectral initialization to obtain a coarse estimate of A°

2. Gradient descent to refine the initial estimate

Two key elements in our (double-sparse coding) setup:

1. Identity atom supports in initialization (a la Sparse PCA)

2. Use projected gradient descent onto these supports



Initialization

Intuition:

Fix samples u, v such that u = A*a,v = A*c/, and consider a third
sample y = A*x*;



Initialization

Intuition:

Fix samples u, v such that u = A*a,v = A*c/, and consider a third
sample y = A*x*; then

(y.u)y,v) = (%, AT A%a) (z", AT A*) = (2", a) (2", )



Initialization

Intuition:

Fix samples u, v such that u = A*a,v = A*c/, and consider a third
sample y = A*x*; then

(y.u)y,v) = (%, AT A%a) (z", AT A*) = (2", a) (2", )

The weight (y, u)(y,v) is big only if y shares an atom with both u and v



Init: Key lemma (1)

Lemma (1)
Fix samples u and v. Then,
A
G = ]E[<y7 ><y7 Z QZCZ/Bz/B Alz + O(k/m log n)
eUnNv

where q; = P[i € S), ¢ij = P[i,j € S] and ¢; = E[z}]i € S].

When U NV = {i}, we can guess the support R of Aj;:
> ler| > Q(k/mr) for | € supp(A%;)
> le)| < o(k/mlogn) otherwise

This lets us “isolate” samples which share exactly one atom.



Init: Key lemma (II)

Idea: Similar idea lets us (coarsely) estimate the atoms themselves:
Lemma (2)

Define the truncated weighted covariance matrix:

Mu,v = E[<y7 U) (y, >yRyR Z %Cz/BZ IAR zAR 5 O(k/m log n)
eunv

where q; = P[i € S], ¢ij = P[i,j € S] and ¢; = E[z}]i € S].

When U NV = {i},
> M, has o1 > Q(k/m)
» the second o9 < o(k/mlogn)



Descent stage

Projected approximate gradient descent

Given A° from the initialization stage
1) Encode: () = threshold(ATy(®)
2) Update: A < A —nP,((AX —Y)sgn(X)T)

g

Note: g is a (biased) approximation of the true gradient:

p
Val ==Y " - Az (@ = (v — AX)XT

=1



Convergence analysis

Intuition: If initialized well, then gradient approximation “points” in the
right direction.

Lemma (Descent)
Suppose that A is column-wise §-close to A* and R = supp(Aj;), then:
(29, AR — AR) 2 allAri — AR4l* +1/(20) Rl — €/

for a = O(k/m) and €2 = O(ak?/n?).




Convergence analysis

Intuition: If initialized well, then gradient approximation “points” in the
right direction.

Lemma (Descent)
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Empirical results

1 4
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Setup setup: ® = I, A: 32-block diagonal with r» = 2, *: Uniform support,

Rademacher coefficients, k£ = 6



This talk

Describe our recent algorithmic work on sparse coding

A |

‘ Dealing with missing data J

Trainini autoencoders |
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Missing data

Generative model:

Y ~ AX

What if only a random fraction (p) of the data entries are observed?




Missing data

Generative model:

Y~ AX

What if only a random fraction (p) of the data entries are observed?

Structural assumption: Democracy

Definition (Democratic dictionaries)

A is democratic if the following holds for all columns i # j, and for any
subset I with /n < |T'| < n:

|(Ar;, Ar ;)|

e <
| Ar il | Ar 4

M
U




Our contributions (II)

Generative model:

Y =~ AX
Observe: only a p-fraction of the entries of each sample (column of Y)
Theorem (Informal)

When given a sufficiently-close initial estimate A°, there exists a gradient

descent-type algorithm that linearly converges to the true dictionary with
O,(mk) incomplete samples.




Our contributions (II)

Generative model:

Y =~ AX
Observe: only a p-fraction of the entries of each sample (column of Y)
Theorem (Informal)

When given a sufficiently-close initial estimate A°, there exists a gradient

descent-type algorithm that linearly converges to the true dictionary with
O,(mk) incomplete samples.

Matches the sample complexity of [Arora et al, '15], but uses only
incomplete samples.

*T. Nguyen, A. Soni, C. Hegde, "On Learning Sparsely Used Dictionaries from Incomplete Samples”, ICML 2018.



Autoencoders

» Autoencoders are popular building blocks of deep networks

Input Hidden Output
layer layer layer
Yu 0
Y2 ' : ) Yo
Yn Jn.

Architecture of a shallow autoencoder (w/ weight sharing)



Autoencoders

» Autoencoders are popular building blocks of deep networks

Input Hidden Output
layer layer layer

-

Yn

Architecture of a shallow autoencoder (w/ weight sharing)

Does training such architectures with gradient descent work?
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Our contributions (III)

Generative model:
Y =~ AX + noise

» X: indicator vectors; noise: gaussian — mixture of gaussians
» X: k-sparse — dictionary models

» X: non-negative sparse — topic models

Theorem (Autoencoder training)

Autoencoders, trained with gradient descent over the squared-error loss
(with column-wise normalization), provably learn the parameters of the
above generative models.

*T. Nguyen, R. Wong, C. Hegde, "Autoencoders Learn Generative Linear Models”, Preprint.
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Summary

New family of sparse coding algorithms that enjoy provable statistical
and algorithmic guarantees

> time- and memory-efficient
> robust to missing data

» connections with autoencoder learning

Open questions:
» Other dictionary structures? (convolutional, Kronecker)
» Independent components analysis

» Analyzing deeper autoencoder architectures



