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Motivation

Example: ADHD-200 brain imaging dataset (Biswal et al. 2010)

The ADHD-200 dataset is a collection of resting-state functional MRI of
subjects with and without attention deficit hyperactive disorder.

» subjects: 491 controls, 195 cases diagnosed with ADHD of various
types

» for each subject there are between 76 and 276 R-fMRI scans

> focus on 264 voxels as the regions of interest (ROI); extracted by
Power et al. (2011)

We are interested in understanding how the structure of the neural network
varies with age of subjects. (Lu, Kolar, and Liu 2017)



Estimated Brain Networks
The differences between junior, median and senior neural networks.
> The green edges only exist in 6(11.75) and the red edges only exist
in G(8).
» The green edges only exist in 6(20) and the red edges only exist in
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G(11.75).
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Limitations

While we can estimate the networks and their difference, it is hard to
quantify uncertainty in the estimates and perform statistical inference.

The goal here is to develop methodology capable of doing so.



Probabilistic Graphical Models

- Graph G = (V, E) with p nodes
- Random vector X = (X1,...,X,)

Represents conditional independence relationships between nodes

Useful for exploring associations between measured variables
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Structure Learning Problem

Given an i.i.d. sample D, = {x;}7_; from a distribution P € P
Learn the set of conditional independence relationships

G = G(D,)
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Some literature: Yuan and Lin (2007), O. Banerjee, El Ghaoui, and d'Aspremont
(2008), Friedman, Hastie, and Tibshirani (2008), T. T. Cai, Liu, and Luo (2011),
Meinshausen and Biihimann (2006), Ravikumar, Wainwright, and Lafferty
(2010), Xue, Zou, and Ca (2012), Yang et al. (2012), Yang et al. (2015), Yang
et al. (2013), Yang et al. (2014), ...




Difference Estimation




Literature Review: Gaussian Graphical Models

Penalized estimation (B. Zhang and Wang 2012, Danaher, Wang, and
Witten (2014))
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Direct difference estimation (S. D. Zhao, Cai, and Li 2014)

A =arg mAin |All1  subject to HfXAfy — ()Ey — T )llse <A



Literature Review: Inference for Graphical Models

Inference is available for single group testing

> Ren et al. (2015), Lu, Kolar, and Liu (2017), J. Wang and Kolar
(2016), Barber and Kolar (2015), Yu, Gupta, and Kolar (2016), Chen
et al. (2015), Jankova and van de Geer (2015, 2016)

Xia, Cai, and Cai (2015) combines inference results for each precision
matrix based on Ren et al. (2015). We will discuss this result more later.
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Inference for Differential Markov Random Fields

11



The Setting

Let F = {f(-;6)} be a parametric family of probability distributions of
the form

Fri0) =20 e (Y byv3) = Z(6) " exp (67u(y)

1<i<j<m

Given samples

> {Xi}ie[n, from f(x;0), and
> {yi}ietn, from f(y;6,)
Our goal is to estimate the change

59 =0, —0,



Density Ratio Approach

Kullback-Leibler importance estimation procedure (KLIEP) (Sugiyama et
al. 2008)

i = B0 (20N o (9. 0) o)

Jp = arg rrgin D (£l r( -3 00)1y)
0

= argmin { — Ex [5Jw(><)} +logE, [exp (64 ¢(y)) } }
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Sparse Direct Difference Estimation

Given the data, we replace the expectations with the appropriate sample
averages to form the empirical KLIEP loss

éKUEP((sg X, Y - 2(59 ’(ﬂ(X, + |0g

Zexp R0 yj))l

j 1

Under a suitable set of assumptions, the penalized estimator

bp = arg ngin Ceriep(00; X, Y) + A dollx
0

can be shown to be consistent (S. Liu et al. 2017, Fazayeli and Banerjee
(2016)).
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Inference For a Low Dimensional Component

Let dg = (0p,1,00,2). Our goal is construction of an asymptotically Normal
estimator of dg 1.

An oracle estimator
0p,1 = arg fgﬂn Lxriep (06,1, 09 2)
0,1

is asymptotically Normal.

What about a feasible estimator

dp,1 = arg r(pin Uerier (99,1, 00,2)7
6,1
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Performance of a Naive Estimator
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Feasible Plug-in Estimator

0 = dilkuier (90,1, 00,2) = O lkLier (09,15 65,2)
+ Hh1(09,1 — 0.1) + Hhz(09.2 — 055) + 0p(1)

> H=V%uep(d;; Y)

- . . N :
> 0y is a consistent estimator of 8} , with ||dg2 — 05 |2 Sp Lﬁ(p)

The problem is that the limiting distribution depends on the model
selection procedure used to estimate 55’2.
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w-Corrected Score Function

Consider a linear combination of the components of the score vector

S.(66,1,06.2) = O1lkrier (30,1, 00,2) — w ' Oalirier (36,1, 0.2)

Our estimator gg’l is a solution to the following estimating equation

0= Sw(60,178\972)
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w-Corrected Score Function

0 = ﬁSw(ggg,gg,z) = ﬁSw(5§71,5§72)
+/n (Hhi1 —w' Hay) (5.9,1 - 6;’1)

+/n (Hiz — w' Ha) (39,2 - 53,2) + op(1)

In order to have /n (59,1 - (5;‘71) —p N(0,03, ) we need:

> E[S.(30.1,00.2)] =0
> /n (le - wTsz) (59,2 - 5;‘72) vanishes sufficiently fast
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w-Corrected Score Function

Idea from Ning and Liu (2017)
Construct w as a solution to

.
Hip = w' Hyp

That is w = Hy,' Hay
Sample estimate obtained as

W = arg min %wTH(gg; Y)w—w'er + Aaf|wl:
w

> needs to converge sufficiently fast
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Our Practical Procedure

Compute an initial estimate gg:

by  arg ngin Liiep(90; X, Y) + A1|0a]l1
]

by  arg ngin euier (903 X, Y) : supp(dp) C supp(d6)
7]

Compute a sparse approximation w to the corresponding row of the inverse
of the Hessian:

W+ argmin %wTH(Sg; Yw —w' e + Aafjw|
w
Re-estimate on the union of the supports from Steps 1 and 2:

(3971, 3972) + arg r’r;in LkLiep(dg; X, Y) : supp(dp) C supp(gg) U supp(@)
)
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Technical Conditions

High Level Technical Conditions:

» consistency for initial parameter estimation

» deviaton for the gradient and Hessian

» local smoothness of the loss

» conditions for the central limit theorem and estimation of the variance
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Technical Conditions

[¥(¥)|looc = M < 0o with probability 1
Amin(H) =2 A >0

w is approximately sparse

VA e &NB0,]d5]1)

vV v v Y

=Y oo = & (alalR - e

1<j<j'<n,

with probability 1 — d,,

log p
ny

An%)
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Main Result

Suppose the regularity conditions hold. Let n = n, A n, be the smaller
sample size and p = lim,_,oc n/(ny V ny).

With appropriately chosen regularization parameters Ay, A2 out estimator
0g,1 satisfies

~

\/EU_1(5071 — (5;)1) —D N(O, 1+ p)

where
02 = (211 — 21222_21221)71.

2

Furthermore, o° can be consistently estimated.
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Simulation Plot
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Power Plot
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Simultaneous Inference

For a potentially large /, we would like to simultaneously test

Hok : g« = dg.0k, k€1 C[p]
Or construct simultaneous confidence intervals

P {5;* € (Bos — Grtall)/V/n, 004 + Guta(l)//n) Yk € /} >1-a
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Simulation Assisted Simultaneous Inference

Inference based on the following test statistic

Sok — 65l
Tg;(ﬁ| 0.k — 0p k|

Approximate the distribution of the test statistic with
1 &
= max —= Z Br = (6) + = DY) 65) ) &
y j=1
where {&}7_, are i.i.d. standard normal random variables.

The bootstrap critical value is the empirical quantile

tu()=inf{teR:P{W<t|X,V}>1-qa}.

28



Future Work

Lower bounds

Can we say something about uncertainty when confounders are present?

» The problem is how to account for the fact that we are estimating the
effect of confounders.
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